

Using EMSIM for Evaluating Pretreatment and Smelting Options

Johan Zietsman, Andrea Steyn, Willem Pretorius

INFACON XV

Agenda

Context and purpose

- Mass and energy balance models
- EMSIM
- Technologies for pre-treatment and smelting
 Process models
- Simulation results
- Conclusion

Context

Opportunities and Challenges

- Commodity prices
- Rising energy cost
- Depletion of resources
- Lower-grade ores
- Raw material variability
- New process technologies
- Environmental pressure

Decision Making

- Respond effectively in existing operations
- Be proactive in new operations

Mass and energy balances, a critically important tool

Introduce the EMSIM M&EB modelling approach

Demonstrate an application to ferrochrome production: Reducing electrical energy consumption

INFACON XV

Mass and Energy Balances Theoretical Basis

For all elements *e*:

$$\sum \dot{m}_{e,products} = \sum \dot{m}_{e,reactants}$$

For all compounds c: $\sum \dot{m}_{c,products} + \sum r_{c,consumed} = \sum \dot{m}_{c,reactants} + \sum r_{c,produced}$

For enthalpy: $\Delta \dot{H}_{required} = \sum \dot{H}_{products} + \dot{H}_{losses} - \sum \dot{H}_{reactants}$

Mass and Energy Balances Input Data

 Stoichiometry data Thermochemical data $\Delta H_{f,298}$, S_{f,298}, Cp(T), pure substances, solutions Raw material assays Chemical vs mineralogical Model parameters Equipment, operation, process

Mass and Energy Balances Tools

General Purpose

- C/C++, Fortran
- Visual Basic
- MATLAB
- Python
- Microsoft Excel

Purpose-made Tools
Metsim
Pyrosim
auxi (Python toolkit)
EMSIM

Mass and Energy Balances Model Types

Forward-calculating Models

- Typical operational inputs specified (assays, rates, ratios)
- Estimate outputs
- More fundamental
- Used for new processes/materials

EMSIM deals with both

Reverse-calculating Models

- Process performance specified (recoveries, C and S content)
- Estimate inputs
- More empirical
- Use as an operating tool in existing plants

INFACON XV

A web-based tool for mass and energy balance modelling

EMSIM Core Principles

 High-quality thermochemical data Powerful thermochemical calculations Reduce mundane tasks Clear communication Flexibility Accessibility Security

EMSIM Coals, Anthracites, Cokes, etc.

- Often treated incorrectly in energy balance
- EMSIM deals with this automatically
- Calculate $\Delta H_{f,298}$ for DAF coal from (DAF = dry ash free)
 - Ultimate assay
 - Gross calorific value

Coals, Anthracites, Cokes, etc.

Proximate Analysis	% Inherent moisture content	(air-dried)	1.9
	% Ash content	(air-dried)	16.4
	% Ash content	(dry basis)	16.7
	% Volatile Matter	(air-dried)	9.4
	% Volatile Matter	(dry basis)	9.6
	% Fixed carbon (calculation)	(air-dried)	72.3
	% Total sulphur	(air-dried)	0.80
	Gross Calorific Value (as determined on an air-dried basis)	(MJ/kg)	28.88
	% Phosphorus in Coal		0.012
	% Phosphorus in Coal % Carbon Content	(air-dried)	0.012 73.81
nate ysis	% Phosphorus in Coal % Carbon Content % Hydrogen Content	(air-dried) (air-dried)	0.012 73.81 2.95
Ultimate Analysis	% Phosphorus in Coal % Carbon Content % Hydrogen Content % Nitrogen Content	(air-dried) (air-dried) (air-dried)	0.012 73.81 2.95 1.62
Ultimate Analysis	 % Phosphorus in Coal % Carbon Content % Hydrogen Content % Nitrogen Content % Oxygen Content (calculation) 	(air-dried) (air-dried) (air-dried) (air-dried)	0.012 73.81 2.95 1.62 2.51
s Ultimate Analysis	 % Phosphorus in Coal % Carbon Content % Hydrogen Content % Nitrogen Content % Oxygen Content (calculation) % Pyritical sulphur 	(air-dried) (air-dried) (air-dried) (air-dried) (air-dried)	0.012 73.81 2.95 1.62 2.51 0.21
orms Ultimate of Analysis Ilphur	 % Phosphorus in Coal % Carbon Content % Hydrogen Content % Nitrogen Content % Oxygen Content (calculation) % Pyritical sulphur % Sulfate sulphur 	(air-dried) (air-dried) (air-dried) (air-dried) (air-dried) (air-dried)	0.012 73.81 2.95 1.62 2.51 0.21 0.02

Switch to browser

INFACON XV

Flow Sheet Example

INFACON XV

advancing through insight

Process Technologies

Smelting

- Submerged-arc furnace (SAF)
- Direct-current furnace (DCF)
- Brush-arc furnace (BAF) (from GLPS)

Pre-treatment
Agglomeration
Drying
Pre-heating
Pre-reduction

Process Models

Drying and pre-heating (one model, different parameters)
Pre-reduction
SAF, DCF, BAF smelting furnaces (one model, different parameters)

Process Models

Switch to browser

INFACON XV

Simulation Work

Options Evaluated

- Drying
- Pre-heating
- Pre-reduction
- Different furnaces

Parameters Considered
Specific energy requirement (SER)
Specific reductant requirement (SRR)
Gas production

Simulation Results

Influence of Moisture

INFACON XV

Simulation Results

Influence of Pre-heating

INFACON XV

Conclusions Process Study

- Drying is beneficial Reduces energy and reduction requirement, and gas volume
- Preheating
 - Between 15 and 20% reduction in electrical energy
- Pre-reduction
 - Largest reduction in electrical energy
 - Also largest capital and complexity

Conclusions **EMSIM Benefits** Rapid model creation • Focus on process Easily shared between users via web Models are solid foundation for Improving understanding Better decision making

Acknowledgements

Co-authors Andrea Steyn, Willem Pretorius
GLPS for sharing information
Reviewers

Thank you

Johan Zietsman johanz.Zietsman@ex-mente.co.za

INFACON XV